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Electron transfer (ET) reactions and optical transitions are considered in chromophores with both the dipole
moment and the electronic polarizability varying with the transition. An exact solution for reaction free energy
surfaces of ET along a reaction coordinate has been obtained in the Drude model for the solute and solvent
polarizabilities. The ET surfaces manifest the following effects of a nonzero polarizability variation: they (i)
are asymmetric, (i) have different curvatures at their minima, and (iii) become infinite for reaction coordinates
outside a one-sided fluctuation band. The physical origin of these effects is the renormalization of the solute
dipole by the solvent reaction field depending on the nonequilibrium solvent configuration. The reorganization
energies of ET are substantially different for forward and backward transitions with higher reorganization
energy in the state with hider solute polarizability. The dependence of the ET rate on the equilibrium energy
gap is quadratic near the rate maximum and is linear at large energy gaps. The energy gap curves are also
flatter from the side of exothermic reactions and broader for the state with a higher polarizability. The bandshape
analysis of optical transitions is extended to the case of a nonzero polarizability variation.

1. Introduction my = My/(1 — 2a0;) (1)

Optical spectroscopy and electron transfer (ET) reactions bothere,a > 0 refers to the solvent response function such that

probe the same elementary process occurring in @ moleculey,q oqyilibrium chemical potential of solvation is given by
(solute): the change in its electronic state. Three major

manifestations of such transitions are (i) a variation of the w; = —amyny, (2)
electric field of the solute acting on the surrounding condensed

phase (solvent), (i) a change in the intramolecular nuclear As is seen from eq 2, the solvation chemical potential is
structure of the molecule undergoing electronic transition, and enhanced by the factor 1/( 2ac) compared to the case of
(iii) a change in a set of transition dipoles and energy gaps of a nonpolarizable solute; = 0. The solvent reorganization
virtual transitions to other electronic states of the molecule. The energy defined in terms of equilibrium solvation by the nuclear
first feature is traditionally related to the solvent effect on solvent modées? should increase as well. The reorganization
spectroscopic and activation paramefefie second effectis  energy of a polarizable solute is, therefore, higher than the
responsible for intramolecular reorganization and conformational reorganization energy of a nonpolarizable sofufe.

flexibility of the molecule? The third effect is reflected in the The next question that still needs understanding is how the
ability of the solute to respond to an external electric field. The reorganization parameters are modified if the polarizability
intensity of the response is scaled with the polarizability of each changeswith the electronic transitioff:48° Two qualitative
electronic state that determines the magnitude and orientationfeatures can be envisioned from the following reasoning.

of the induced dipole created at the solute. Here we look at the Coupling of the solvent reaction potential to the difference of
combined effect of (i) and (iii) addressing the problem of the solute charge densities in the charge transfer and initial states

modification of the solutesolvent coupling by the solute IS @ssociated with the ET reaction coordinate. The free energy
electronic polarizability. |nveste_d in creation of a nonequilibrium solvent co_n_f|g_urat|on
. . . determines the free energy surface of 'EA.nonequilibrium
The_ sqlute electrl_c field pplanzes th_e conqlensed medium, solvent configuration creates a nonequilibrium reaction field that
resul'tlng in an electric (reaction) potentlgl aqt!ng on the solute induces charges on the solute. These induced charges may add
localized charges. For a nonzero polarizability of the solute, to, or subtract from, the fixed solute charges. The effective

the solvent potential deforms the electronic charge distribution ¢q),te-solvent coupling will, therefore, increase or decrease
producing induced charges acting back on the solvent. This self-yepending on the solvent configuration. Since the selstdvent
consistent action enhances the effective field of the solute andcoupling is projected into the ET reaction coordinate, solvent
leads to higher solvent reorganization energies of electronic flyctuations of the same energy may correspond to different
transitions®=> To illustrate this point, consider a dipolar solute reaction coordinates. This implies an asymmetry of the free
possessing the dipole momentg in the two ET states labeled  energy surfaces of ET. Furthermore, when the polarizability of
asi = 1, 2. As is well-knowrf,” a nonzero solute polarizability  the solute changes with instantaneous electronic transition, the
Qo results in a renormalization of the solute dipatg — my; induced solute dipole changes instantaneously as well. lts
increasing its value such that interaction with the reaction field of the nuclear subsystem,
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frozen on the time scale of ET, will be different in the two over the nuclear coordinates of the system. Of course, the
states. This results in a component of the solvent reorganizationformalism outlined above has been used in quite a number of
energy proportional to the polarizability variatidw = o, — ET theories, both analytic&i11P-12.13cgnd numericat:1 The

op1. These two qualitative predictions of the effect of a nonzero novel feature of the development in this paper is the explicit
Ao on electronic transitions, asymmetry of the energy surfaces inclusion of the variation of the solute polarizability in calculat-
and enhancement of the reorganization energy, have motivatedng the free energiel5i(X). The rest of this section is developed
our present study. in line with the two-step procedure given by egs 3 and 4.

The aim of this paper is to provide qualitative insights into The model considered here assumes a solute with the dipole
the effect of the solute polarizability change on the activation moment and polarizability both varying with electronic transi-
and spectroscopic parameters of electronic transitions. Generation:
relations are presented below for the activation and reorganiza-
tion free energies, as well as for the spectral moments and band Mgy ™ Mgy, Oy ™ Ogo (5)
profiles of optical transitions. Although we use the dielectric
continuum model for numerical evaluations, the theory is The solute is dissolved in a solvent of molecules bearing the
formulated in terms of the solvent response functions and is, dipole momentn and the polarizabilityr. For simplicity, only
therefore, open to more sophisticated molecular treatments ofisotropic solute and solvent polarizabilities are considered. An
the solvent response. In section 2, we obtain the exact solutionextension to anisotropic polarizabilities is straightforward in the
for the free energy surfaces of ET for polarizable solutes and framework of our formalism
analyze the reorganization parameters and the energy gap law The instantaneous free energigsof a dipolar polarizable
for ET reactions. It is shown that different polarizabilities in solute in a dipolar polarizable solvent can be derived using the
the neutral and charge transfer states bring about differentDrude model for induced solute and solvent dipole momé&hnts.
reorganization energies and asymmetries of the free energyThis approach represents the induced dipoles as fluctuating
surfaces. This is projected into an asymmetric free energy gapvectors: p; for the solvent molecules arpg for the solute. The
law for ET: the dependence of the activation energy on the potential energy of creating a fluctuating induced dipplées
driving force (energy gap law) is found to be less curved and given by that of a harmonic oscillatop?2a, with the
is shallower from the side of exothermic reactions for the state polarizability o appearing as the oscillator mass. The system
with higher polarizability. The energy gap law of ET becomes Hamiltonian H; is the sum of the solventsolvent,Hss and

increasingly asymmetric with increasimg. A linear depen- squte—soIvent,Hg;, parts

dence on the driving force holds for large energy gaps. In section

3, spectroscopic parameters of optical transitions with-= 0 H. = Hgl + Hg, (6)
|

are considered. In section 4 we conclude.

In H;i, the permanent and induced dipoles add up resulting in

the solute-solvent and solvertsolvent Hamiltonians in the
2.1. Free Energy SurfacesThe concept of reaction free  form

energy surfaces along a reaction coordinate has become a basis

for theoretlcal d_e_scrlptlons of thermally actlvate_d and optical Hgé =1, +Ugasp_ Z(mOi + po)‘ToJ"(mj + pj) +

electronic transitions of molecules dissolved in condensed ]

2 i —2a 2 2
phaseé. The procedure of calgulatmg the_free energy sur_faces (220 )[wq Po”+ P (7)
is essentially based on the idea of adiabatic separation of
different time scales characteristic of the system undergoing theand
electronic transitio”® Two steps are usually considered. In the
first step, the electronic degrees of freedom of the solute and rep_ 1 .
the solvent are traced out to define the instantaneous (partial)HSS: Uss /ZIZ(mi P Tie M+ py) +

free energiedte U20) 5 [0, %2 + P71 (&)
exp[-PE] = Tr,(expl-AH]) ) J

whereH; is the Hamiltonian of the system in the grourd< Here and throughout this paper “0” indicates the solliiejs

1) or excited { = 2) statesp = 1kgT, and Tg means the trace  the dipole-dipole interaction tensor, antix = Ty(1 — dj);

over the quantum states of the fast electronic degrees of freedomUps andUg;” stand for repulsion potentials ahds the vacuum

The energieE; are treated as functions of the configuration of energy of theith electronic state. The frequencies and ws

the slow nuclear subsystem. The conventional B&dppen- characterize electronic excitations of the solute and the solvent,
heimer energies arg — « limits of the free energies;. respectively.

Fluctuations of the nuclear coordinates result in the resonance The statistical average over the electronic degrees of freedom
E; = E, when the electronic transition occurs. The ET free in eq 3 is equivalent, in the Drude model, to integration over
energy surface is therefore defined as the free energy investedhe induced dipole moments andp;. The HamiltoniarH; is

in creating a particular mismatch= AE = E, — E; between quadratic in the induced dipoles and the trace can be calculated
the instantaneous free energigs The collective energy gap ~ exactly as a functional integfélover the fluctuating fieldpo
coordinateX thus becomes a natural choice for the reaction andp; (see Appendix A} The resulting instantaneous free
coordinate. The associated free enerdigX) are mathemati- energy

cally given by the expressiéh!?

exp[—BF,(X)] = Tr,.{0(X — AE) exp(-E]) (4) _ _
is composed of the solvensolvent partEss(eq A7 in Appendix
Here,d(X) is the delta function and Fy refers to the integral A), and the solutesolvent pari?

2. Electron Transfer

Ei = Ess+ EOsj (9)
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Ep =1, + UpP + US‘SP_ my-fs R, — wherea, is the response function of the inertial solvent modes.
o * ) e Then, the distribution functioR(R,) of the inertial reaction field
ImaiRe e Mo — Ryt R, (10) R, is a Gaussian function

HereRy is the reaction field of the solvent nuclear subsystem P(R.) = (47 —12 oyl R 24 15
(eq A9),R. is the reaction fields created by the induced solvent ( p) ( apkBT) PE-5 P ap] (15)

dipoles (eq A10), and Equations 13-15 form a complete basis for constructing the
1 free energy surfaces$(X) according to eq 4. That this
fe =[1— o4R.] (11) description is consistent is seen from the fact that the ensemble
. average
The termsUg? andU3: in eq 10 stand for the solutesolvent
repulsion and dispersion potentials, respectively. The t&ms
andf are generally second-rank tensors, with the latter being
responsible for the effective enhancement of the solute dipole
moment by the reaction field of the solvent induced dipoles.
In principle, bothR. andR, depend on the center-of-mass
coordinates of the solvent moleculd®; also depends on the
orientations of the solvent permanent multipoles. In defining
the free energy surfaces according to eq 4, we need to inCIUdewherea _
averages over both the., and R, reaction fields. In such a
treatment, the free energy surfaces in eq 4 are obtained by f=[1— 2aq _]—1 (18)
calculating a cumulant expansion in the sotuselvent poten- : o
tial.>17 It appears that the second-order cumulants involving
dispersion and induction forces are much smaller than the
corresponding first-order cumularf&se Physically, this means
that the reaction fieldR. does not vary considerably with _ CApD _YarD 2
fluctuations of the center-of-mass coordinates of the molecules X= Al = AM-R, = AGR, (19)
in dense molecular solvents and can be replaced by its average, . o
R[] This is the approximation we adopt in the present paper.
The harmonic Drude model for the induced dipoles is equivalent A = f_mg, — f. Mo, A8 = f 0, — f100; (20)
to the linear response approximation (LRA) in which the
chemical potential of solvation by the induced solvent dipoles and the nonpolar (“np”) energy gap
is —ae fsmgi2 and the reaction field of the induced dipoles reads

expl—pu] = [ exp-PEx] PRy dR,  (16)

generates the well-knovirsolvation chemical potential of a
polarizable dipole (eq 2)

Wi = _afim()i2 (17)

ap + ae is the total solvent response function and

For the instantaneous free energies given by eq 13, the
reaction coordinate becomes

[Rls = 28:045Mo (12) Al =15 = 1+ AB™ = afamyy” — feamy)  (21)

Here, a. stands for the electronic response function and the consists of the vacuum energy gap and solvation stabilization
’ by dispersion AEYsP = WG~ WGR and induction forces.

Greek subscripts denote the Cartesian components of the tenso Usi 13. 15 and 19 tint i
[R..[Jand the vectomg. Under these assumptions, the sotute ’SINg €4S 15, 15, an » ONE can carry out integration over
p in eq 4, which yields the following integral representation

solvent part of the instantaneous free energies used below haw?
the form or the ET free energy surfaces

4 —wd
Eoe; = | + U+ USSP — a_f,me2 — exp[-BF,(X) + Aol = [ %Bci(g) explF(EX)] (22)
famoR, — Y0t feiRp2 (13) y o )
HereF is the equilibrium free energy of the ET system in the

and ith state

fy =[1 - 2a04] " (14) Fi(EX) =& (X — AF(&) — (nilB) 9(&)E®  (23)

The last, negative contribution s in eq 13 is very important ~ and

for the following development (see also Appendix in ref 3d). It

is responsible for the modulation of the force constant of the Ci(&) = V/Tigi(5)/f (24)
fluctuations of the solutesolvent coupling by the solute

polarizability (see Discussion below). An analogous term The exponential functior=i(5,X) in eq 23 is written in the
appears in the second-order perturbation to the instantaneousilinear form standard for the high-temperature limit of the ET
Born—Oppenheimer energies (instead of instantaneous freerate. There are, however, important distinctions from the well-

energies used here, see ref 10f) in Kim’s descriptfdnn ref studied case of zerAa. In the first place, the quadratic term
10d, however, the ET free energy surfaces were not calculated
and the term agRy? was altogether omitted in the subsequent (ip) 9/(&)& (25)

study of ET10e
Equation 13 suggests that it is only the distribution of the depends on the ET state. Here
inertial (nuclear) reaction fieldR, that is needed in order to
perform the statistical ensemble average in eq 4. In the LRA, N = ap(fi/fei)Arﬁ2 (26)
the chemical potential of solvation of the solute dipoig by
the solvent inertial (nuclear) degrees of freedom-igmoi?, and
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) B Nz very important property of the ET free energy surfaces obtained
G =[—-iggl ™", &= gﬂl‘—A& (27) by rewriting the exponential functioR;(£,X) in the form
|
The fungtiongi(g) multiplying the quadratic tern§? in eq 23 is Fi(EX) = —i&Y — Ai"&_gi_ (39)
responsible for a nonlinear asymmetry of the free energy E+i§

surfaces. The facta;(&) appears as a result of enhancement of
the differential solute dipolésim by a nonequilibrium inertial Here
reaction field of the solvent due to a nonzexa. (cf. eq 27 to

egs 14 and 18). It is also included into the vertical energy gap Y =AF — X+ 4/2y,

AFi(é) (eq 23) as ARE
=Al,+5=—X (40)
AF(§) = Al + Gi(E)AF,; (28) P 2Ad
A= A2y, (42)
where

o ~ and
AF,; = —2a, f[Am-my + a, fiAamOiz] (29)
is the differential free energy stabilization due to the inertial Vi W‘Aa/Amz (42)
solvent modes. In the cagex = 0, AFp; reduces to the well-

knowr?b result Also, in the above notatior; = 5/2y; in eq 27. At§ — oo,

Fi(§) — —i&Y and the integral in eq 22 can be evaluated as a

AF,; = —2a, ffAm-my contour integral closed in the upper or lower half-plane
P! ' depending on the sign of. WhenAda > 0 the singularities;
= —2(af — a,f)Am-my; (30) (eq 27) are in the lower half plane. The contour integral closed

in the upper half-plane then generates zero for the integral over
The moments of any ordeK"[jIfollow directly from eq 22 £atY < 0. This means that
as derivatives

1 9" A9 = “
N — —_—
X m_ (_i)n 3ilGi(Z)|FO (31) at
of the generating function X > X = Al + %, A& > 0 (44)
G,(2) = exp[F(z,0)] (32)
Similarly,
This yields o = 2)
(—)"2n)t! N AG\N—2 Fi(X) = o (45)
= n)! i
BN =", wi)( . mz) (33)
For the first lant one h AR
or the first cumulant one has X < Xpin = Al p — M' A& <0 (46)
[XO= AF, (34)

The pointsXmaxandXmin set up the upper and lower boundaries
where for the values of the energy gaps between the donor and acceptor
_ electronic states that can be achieved by the nuclear fluctuations

AF; = Al + AR, (39) of the solvent. AA& — 0O the upper and lower boundaries move

to positive and negative infinities, respectively, allowing the

The second cumulant whole spectrum of the solvent fluctuations.

2—_ For Ad > 0 andX < Xmax Or Ad. < 0 andX > Xqin the
PUOX)TI= 2, (36) contour integral necessitates accounting for the essential sin-
determines the reorganization energy 3;1;{adrbi‘ty at&;. The integral oveE evaluated in Appendix B then
A =nm|1— 2AF AG 37
P =0 ONT (B7)  exp[BF(X) + BFy] =

A AN LB IYANvi]) exp[=B(Y] + [AN/2]vi]] (47
When the solute polarizability is constant, the reorganization A A i) expl=4( 2yl @7)

energy is the same in both reaction states and is given by theHere, 15(x) is the first-order Bessel function of the imaginary
well-known relatiofc7> argument and the preexponential factor

A= (af — a,f)Am? (38) AT =20y, (1 — e A (48)

The weak dependence of the preexponential faCi) on
& can be neglected. The integrand in eq 22 is then an analytic
function in the compleX-plane except the points of essential o _
singularities a&; when |Fi| — . This observation leads to a ﬁf—m dX exp[=AF(X) + fFa] = 1 (49)

provides the normalization
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(56)

with the high-frequencys., and staticgs, dielectric constants
€x = 2 andes = 30. Although more accurate algorithms for
calculatingae anda, are availablé;*2¢3we are interested here
only in qualitative insights into the effect of nonzetol = ayg;
— apz and a continuum description will suffice for this purpose.
Two salient features are seen from Figure 1. First, the
comparison of the dashed-line and solid-line surfaces in the
4 initial state { = 1) shows that the polarizability change brings
(X-AL eV a_bout an asymmetric _shallownt_asd—‘Q(X) f_rom the negativeX _
side. The physical origin of this result is clear. The reaction
coordinateX reflects the effect of the inertial solvent reaction

Figure 1. Free energy surfacés(X) (labeled as 1 and 2) for the exited
state polarizabilityo, = 20 A3 (dashed lines) andg, = 40 A2 (solid

lines). Solute and solvent parameters e = 0, Moz = 15 D, alo1 = field on the solute electronic states. Depending on the nonequi-
20 A3 Ry=4 A, es= 2, s = 30; a zero equilibrium energy gap of ET  librium nuclear configuration of the solvent, the solute-induced
is assumed. dipole subtracts from or adds to the solute permanent dipole.

_ _ ) _ Therefore, the effective differential solute dipole decreases or
Equation 47 is the exact analytical solution to the problem increases depending on the solvent configuration resulting in
of calculating the ET free energy surfaces in the presence of aasymmetry of the free energy surfaces. The second effect of a

nonzero polarizability variation. Throughout belavi > 0 is nonzeroAa is the broadening of the final & 2) free energy
assumed as the most frequent situation for electronic transitions.surface compared to the initial sate< 1) (see Figure 3).
WhenX is not too close t0Xmaxminthe inequalityB./| YA, |/vi| Asymmetry and different curvatures of the free energy surfaces
> 1 allows to use the asymptotic expansion should lead to a nonparabolic dependence of the ET activation
energy on the equilibrium free energy gao = Fo2 — Fo1
L) — (27x) %, x— oo (50) (energy gap la##~2)) that is considered next.

2.2. Energy Gap Law.The free energies of activation for
which yields for the ET free energy surfaces (the preexponential the forward { = 1, AF;) and backwardi(= 2, AF;) ET are

factor is neglected) calculated from eq 47 as
t_
F(X) = Fo + (27) (AR, = X+ A/2y, = Jal2y)* (51) Fi*'=F/(X) ~ Fy (57)
At 2i/2y; > |AF; — X| eq 51 transforms to the standard parabolic whereX* stands for the position of the activation barrier at the
form intersection of the two diabatic curveB;(XH) = Fa(X*). The
transition state is achieved when the energy gap between the
(X — AF-)Z instantaneous free energies is zero and, according to the
F(X) =Fq+ ! (52) definition of the reaction coordinate in eq X’ = 0. The
4 activation energy is then given by the simple equation

Oppositely, wherdi/2y; < |AF; — X|, the linear limit is in order

Foct= Ziy(JAFi + M2y — JAl2y)? (58)
I

|AF; — X] 53
2y; (3) Two types of the energy gap law can be immediately
recognized from eq 58. A{AF|| < 1i/2y; the traditional
At the boundanX = Xmnax Fi(X) become discontinuougzi(Xmax guadratic dependence is in order
— 0) = Fo + Aildyi? and Fi(Xmax + 0) = oo.
In Figure 1, the ET free energies are plotted for the electronic

F(X)=Fy +

(AF)?

transition without a polarizability change; = a2 = 20 A3, ?Ct: 4. (59)
dashed lines) and with the excited polarizability twice as high :
as that in the ground statefy = 20 A3, a2 = 40 A3, solid _In the opposite limit, the linear dependence holds
lines). The calculations are performed for the model spherical
solute of the radiu®, = 4 A with the dipole momentsy; = act |AF;|
0, myz = 15 D. This situation is most close to the charge Fr=— - (60)
separation reaction Vi
_ Experimentally, the ener ap law is monitored by changin
D-A—D"—A (54) p Yy gy gap y ging

the vacuum component of the equilibrium vertical gAp;
through chemical substitution of the donor and/or acceptor
units18-21 The solvent component afF; is usually assumed,
though not always justl§2 to be reasonably constant. The
guadratic and linear dependenceMR; in eqs 59 and 60 then
3= — (55) become the quadratic and linear energy gap laws, respectively.
2, +1 Ro3 Note also that iXmax in €q 44 is negative, no crossing of the
diabatic ET surfaces is possible. The activation energy is infinite
and and no radiationless transitions are induced by the nuclear

The response functiona and a, are taken in the dielectric
continuum forni




10986 J. Phys. Chem. A, Vol. 103, No. 50, 1999 Matyushov and Voth

_BFiacl

-5 -4 -3 -2 -1
AF A /eV
Figure 2. ET energy gap law for the charge separation (@&, — Figure 3. Dependence of the solvent reorganization energy in the initial
Moz, AFcs = AFo) and charge recombination (CRg; — Moy, AFcr = (1) and charge-separated (2) states on the polarizability of the final

—AFy) reactions att; = 20 A andao, = 40 A°. Parameters are asin gtateqy,. The dashed line indicates the valuereffrom eq 26. Other
Figure 1. Points and the dashed line are drawn to illustrate two possible 5o |yte and solvent parameters are as in Figure 1.

outcomes of combining CS and CR experimental data in one plot with

a common energy gap scale (see the text). TABLE 1: Ground State Polarizability ( a;) and Trace of
the Tensor of Polarizability Variation (1/3) Tr[ Aa] for

solvent fluctuations. Other activation mechanisms should be Several Optical Dyes and Charge Transfer Complexes

included for the reaction to occur.

(L3)Tr
/A3 [AaJ/A3  ref

Figure 2 shows the activation energy of the forward (charge chromophore

separation, CS) reaction Yé~cs = AFg and backward (charge  anthracene _ 25 17 24a
recombination, CR) reaction VsFcr = —AF for the transition 2,2-bypyridine-3,3diol 21 11 24d

—0— = 15 D andao; = 20 A2 — an» = 40 A3 Two b|s(€_:1damanty||'dene) _ 42 29 24c¢
Moy Moz 01 . 02 Y 1-(dimethylamino)-2,6-dicyano-4-methylbenzene 22 35 24b
important effects of nonzerda manifest themselves in Figure  tetraphenylethylene 50 38 32a
2. First, in contrast to the case of zekat, the maxima of the [(C)sFe'CNOg" (NH3)s] - 57 32c
CS and CR curves do not coincide. Second, the CR curve is (NC)sOs'CNRU" (NH3)s] - (1983)31? 32d
broader and shallower from the side of negative energy gaps sl sze
compared to the CS curve. aFor two different charge-transfer transitioi€Obtained with the

The energy gap law for thermally activated ET reactions is 'ocal field correction factof = 1.3.
often obtained by superimposing CS and CR data on a common ) i o i
scale ofAFo.18 For such a procedure, depending on the energy Fi(X). There is therefore no unique definition &fin the latter
range studied, two outcomes are predicted by the present theorycasé®**¥#?3and one of the two routes should be chosen.
For a narrow range okFcsandAFcg values close to zero, the We favor the second definition (eq 36) for the following
intersection of two curves (illustrated by circles in Figure 2) reasons. First, the calculation or experimental probing of the
may occur. Such a behavior was indeed observed in ref 18b forvertical energy gaps involves highly nonequilibrium final states
a series of porphyrinquinone diads. Note that maxima of the  that may be affected by nonlinear solvation and/or asymmetry
CS and CR curves get closer to each other with decreasingof the free energy curves owing to differing polarizabilities of
solvent polarity and, in fact, no curve crossing was seen for the the ET states. Second, the second cumulBX) 2 is often

same systems in benzene as a sol¥€nthen the normal  ayajlaple from computer simulatich&!3and can be exactly
region of CS is combined with the inverted region for CR, 5iculated in our present model (eqs 36 and 37).

another scenario is possible. The two branches (shown Electronic excitations usually result in higher polarizabilities
squares in Figure 2) fitted by a single curve (the dashed line in . y gnherp -
of the excited statany, > 00124 Therefore, for positively

Figure 2) result in a plateau in the energy gap law (a picture . 3 ;
reminiscent of this behavior can be seen in Figure 4 of ref 18c). solvatochromic dyes witio, > mp; one hasAFp; < Oineq
2.3. Reorganization Energy.In traditional theories of ET 37 and excitation leads to a higher reorganization energy. This

the reorganization energy is responsible for two important IS |II_ustrated in Figure 3 \_Nhe_re we have plottiad_agamstaoz.
links: (i) between the verticainternal energy gap and the S IS seen, the reorganization energy approximately doubles
equilibrium free energy gap and (ii) between the curvature of with ex.0|tat|on when the excited-state polarizability is abqgt
the ET free energy surfaces and the energetic intensity of the50% higher than the ground-state value. Such polarizability
solvent fluctuations measured by widths of optical spectral lines. differences are not uncommon for optical chromophtresee
These two connections are frequently used as means to definelable 1) and we will discuss this result in the application to
the reorganization energy. In the first route, the reorganization optical spectroscopy in the next section. The effect of the
energy is given through the vertical energy gaps correspondingnegative polarizability variation is much weaker ahds only
to optical transitions with the energigs); (i = 1 for absorption slightly smaller thani;. An opposite dependence of the
andi = 2 for emissior) reorganization energy on the polarizability difference to that
given here was reported in ref 8. The reorganization energy
A = [hw, — ARy A, = |hw, + AR (61) computed from simulations via eq 36 falls from 0.86 eV for a
nonpolarizable solutenfyy = 5.4 — my, = 10.7 D, 0lo1 = Qo2
The second route is through the mean-squared fluctuation of= 0) to 0.43 eV for the transition with the positive polarizability
the nuclear subsystem projected into the reaction coordinate (ecchange o1 = 0.06 — ag, = 3.21 &%) and the same dipoles.
36)413cdThe two definitions are equivalent for parabolic ET  Since the ground-state polarizability is close to zero, that result
free energy surfaces, but lead to different results for nonparabolicis also at odds with several previous studies.
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Figure 4. Normalized absorption (a) and emission (e) spectraxfer
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Figure 5. Dependence of absorption (a) and emission (e) widths on
the Stokes shift obtained by changing the static solvent dielectric
constant in the range, = 3—65. The dashdotted line indicates the
equalityhAws = 24 valid for Aa. = 0.

upper panel) and for the vibrational envelopes (the lower panel,
eq 69 below).
The solvent-induced Stokes shift

hAwg = hw, — hw, = 2a,AM-[f,my, — fimy] +
2a°Ad[(f,my)” — (f;myy)°] (65)

is now the sum of two contributions: one arising from the
variation of the solute dipole (the first summand) and one due

panel shows solvent-broadened lines and the lower panel shows theto the polarizability change (the second summand). The Stokes

vibronic envelopes calculated according to eq 69. The ddskted

shift is hence nonzero even if the charge distribution does not

lines in the lower panel indicate the four first vibronic components of change in the course of the transitiong = my;). A term similar

the sum in eq 69. The solvent and solute parameters are as in Figur
1; A, = 0.4 eV,Awy, = 0.2 eV.

3. Optical Spectra

%o the second summand in eq 65 appears also in the reorganiza-

tion energy calculations by Liu and Newton combining the ab
initio electronic structure with self-consistent field of nonspheri-
cal dielectric cavitieg® Our exact equation for the Stokes shift

Bandshapes of inhomogeneously broadened optical lines canyiffers from the relation given by Kifd due to several

be obtained directly from ET energy surfaces. Normalized
(fli(w) dw = 1) intensities Aa. > 0)

(@) = BRAY AN (@) (BYY(@)Aly) x
expl-A(Y(®) + A)/2y] (62)

of absorption i(= 1) and emissioni(= 2) transitions follow
from the free energy surfac€yX) given in eq 47 by replacing
the reaction coordinat¥ with the energyhiw of the incident
light. If the spectral line can be fitted to a Gaussian, the band
maximum

hw, = AF, (63)

and the width

2 Ad
0 = 2k;Tyi| 1 — 2AF,— (64)
i kB |[ p’lAﬁ’Iz
follow from egs 35 and 36. For a non-Gaussian ling; and
0i? give the first and second spectral moments, respectively.

The general effect of a positive polarizability chanye > 0

approximations employed there. In the limitt = 0, eq 65 is
identical to the classical Liptay restiftyhereas Kim's equation
is not.

One of the consequences of nonzé is that the relation

hAwg, = po° (66)

valid for linear solvation response adx = 0 does not hold
any more. In Figure 5, the widthks2 are plotted vs the Stokes
shift obtained by varying the static dielectric constant of the
solvent in the ranges = 3—65. The absorption width deviates
downward from the unity slope line predicted by eq 66 while
the emission width goes upward. The opposite behavior follows
from nonlinear solvation effec&:the absorption width deviates
upward from eq 66 and the emission width goes downward.
This is because nonlinear solvation results in narrowing of
emission lines in contrast to the broadening effechof > 0.
The two effects, therefore, tend to compensate each other in
the dependence gfoi? vs hAws;, although the effect of the
polarizability variation is stronger.

Asymmetry of the free energy surfade$X) (Figure 1) does
not manifest itself in optical bandshapes for the solute and
solvent parameters considered here. Deviations from the Gauss-

is to enhance the solvent-induced shift of emission bands andian bandshape can be measured by the parameter

to broaden bands for both absorption and emission, with a
stronger broadening of emission lines. This is illustrated in
Figure 4 where we show the normalized intensitiés) for a
model positively solvatochromiarp, > mp;) dye (parameters
are as in Figure 1) foAa = 0 and Ao = 20 A3. Broader

§ = Awil; (67)

reflecting the difference between the reorganization enérgy
obtained from the Gaussian width and the reorganization

emission lines are seen for both the solvent-broadened lines (theenergyl,i extracted from the widthi(1/2) measured at the level
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of half band intensity betweenii/y; and the energy of the band maximum such that
Bo(1/2f A AP
i = Tt 68 —=—+2(,— 1)) — 2ho, 75
wi 16 In(2) ( ) Y, AdL ( 2 1) i ( )

For the calculations shown in Figures 3 and 5, the parametersThe factorss in AM andAé are commonly close to unity and
s are very close to unity, indicating that the optical lines can the intercept of the plati/y; vs fiw; can be used as a measure
be fitted to Gaussian functions. Higher polarizability changes of Am?/Aa.

are needed for the asymmetry effect to be seen in optical

bandshapes. Note also that in many caseath&ensor is highly 4. Discussion

anisotropicz* A substantial component dfo along the direction

of charge transfer may considerably enhance the band asym
metry. Since consideration of real systems is necessary for
quantifying this effect, we refrain here from speculating on this
point.

For a complete description of the spectral bandshape one
needs to include the influence of intramolecular vibronic
excitations. In the model of one quantumAftiw,)
cosechfhwy) < 1), intramolecular (skeletal) vibrational mode
with the frequencyy, and the vibrational reorganization energy
Ay One get&:22.26,27

_Underlying the theoretical treatment presented here is the idea
that the charge distribution induced on the solute by a nonequi-
librium solvent reaction field changes instantaneously with
electronic transition if the solute polarizability is different in
the two ET states. A FranekCondon transition changes not
only the solute-solvent interaction potential linear in the solvent
reaction fieldRp, but also the solute polarization energy quadratic
in Ry (eq 13). The instantaneous energy gap between the donor
and acceptor states in then a bilinear function in the Gaussian
field Ry (eq 15). The problem of calculating the ET free energy
surfaces from the instantaneous free enerBigss, therefore,
formally equivalent to that of two displaced oscillators with

o9 A different force constants. The corresponding Hamiltonian with
li(w) = phA € %y — mu(ﬁ\/vn(wmi/m x
w

the classical nuclear modgreads

=on! .
exp[=B(Y,(w) + A)/2y] (69) H. =Hy, + Cq+ Y0 q (76)
Here Radiationless transitions between the surfaces defined by eq 76,
Y, = AF, + A/2y, £ nho, — ho (70) usually associated with Duschinsky rotation of normal mades,

have been considered in numerous studies focusing mostly on

the case quantum nuclear mod@&quation 47 derived here
¢ for the particular problem of the solute polarizability effects on

electronic transitions gives, at the same time, the exact solution
of the Duschinsky rotation problem with classical normal modes.
n _ Note that the FranckCondon factor in the Golden Rule
ho < Roma= AR+ 412y, £ nho, (71) expression for the transition probability is given by eq 47 with
X=0.

The model of two displaced parabolas with different curva-
tures has been actively employed in application to ET by
Kakitani and Matagd® However, as first noticed by Tachiya,
projection of thermal bath oscillators with different force
constants onto one collective transition coordiriatgl, — H,)
should result both in different curvatures at equilibria and
asymmetries of the corresponding free energy surfaces. These
are indeed the features reflected by the present model. The
interaction of the differential induced charge with the inertial

uclear field frozen on the electronic time scale results in the
ollowing qualitative effects: (i) the solvent reorganization
energies in the initial and final ET states are different, (ii) the
ET free energy curves are asymmetric, and (iii) the range of
Ay reaction coordinates is limited by the upper boundariat>
— (72) 0 and by the lower boundary ato. < 0. The ET free energies
Y1 Y2 are infinite outside the corresponding fluctuation bands. The
magnitudes of these effects are governed by the difference of
@y) t=1+(2p,)" (73) polarizabilities in the final and initial stateAg.. Unfortunately,
measuremeff and calculatio? of Aa is still a challenge and
and polarizabilities in both ground and excited states are known only
for a few optical chromophores. Recent results of Stark
}2 _ ﬂ — JhAw (74) spec;roscop%?‘k*‘*32 indicate that polarizability may vary sub-
Yo V1 st stantially for many optical chromophores and charge-transfer
complexes. To provide the reader with a perception of magni-
These relations can be used as a consistency test of theudes involved, Table 1 shows some examples of polarizability
bandshape analysis. Also, when the dispersion component ofchanges taken from the recent Stark spectroscopy lite4fufé?
the spectral shift is negligible, there is a linear correlation Noteworthy is a very large polarizability change for binuclear

S= AJ/hw,, and “+” and “—" refer to absorption and emission,
respectively. The transition frequency is nonzero only if the ligh
frequency is confined by the one-sided band

For absorption transitions, the bound{ﬂmﬁﬂé1X blue-shifts with

n and all vibronic transitions can effectively contribute to the
bandshape. Oppositely, for emission transitions, the band
boundary red-shifts with and starting witm of the order ofS

+ Ail2yihw, the corresponding vibronic excitations contribute
increasingly less to the band intensity.

The first spectral moment calculated from eq 69, is equal to
AF; £ Ay. The solvent-induced shifiF; can thus be measured
provided4, is available from independent sources. The param-
eters 4, vi, and w, are usually unknown and should be
considered as fitting parameters of the bandshape analysis. Ye
the coefficientsy; and the reorganization energigsare not
independent as

A

l_
3
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charge-transfer complexes. Even higher polarizability variations the linear-logarithmic dependenteAF; In AF; on the vertical

occur in polyeneg?a34 energy gapAF;.2¢2627¢The strictly linear dependendé AF;
The Marcus theory of Efpredicts a parabolic dependence arising from a nonzero polarizability difference may provide
of the ET activation energy on the ET driving fora&,. Such an alternative explanation of this phenomenon. In fact, the switch

an idealized behavior has, however, never been observed forof in the energy gap law from the quadratic to linear dependence
real ET systems. Although bell-shaped curves are now docu-happens in passing from weakly cougiedf to strongly
mented for charge shitf charge separatiof, and charge coupled”@¢ion pairs. In the latter case, the polarizability may
recombinatiod reactions, all observed energy gap laws are change considerably with charge transition.

substantially asymmetric. Basically, two explanations of this  Both vibrational envelopes and solvent-broadened optical
asymmetry have been proposed in the literature. The first lines show vastly different widths for emission and absorption
approach addresses the problem from the viewpoint of the SPectra with a nonzeraa (Figure 4). Although the numerical
donor-acceptor supermolecule. It assigns the observed asym-€xamples used In this paper have shown _onl_y avery moderate
metry to intramolecular vibronic excitations. Vibrational excita- aSymmetry of optical bands, some general insights into the effect
tions accommodate the energy of exothermic reactions makingOf the polarlzabllllty change on band proflles are relevant here.
the energy gap curves shallower in the inverted region of ET.  The conventional procedure attributes all asymmetry of
This model predicts a mirror symmetry between forward and optical bar_1ds to excitations of V|brc_)n|c states. The_se transitions
backward ET: the activation energy of a forward reaction, aré especially effective on blue wings of absorption lines and
AF1(AFo), should coincide with the activation energy of the red wings of emission lines maklr)g absorption spectra broader
backward reactiom\F»(—AFo), at the inverted energy gap. This  ON the right side f_rom the maximum and emission spectra
prediction seems, however, to contradict experiments showing Proader on the left side from the maximum. However, the mirror
very different energy gap laws for CS and CR reactir@n symmetry b(.atween.gbsorpthn and emission H?l_esll .holds

the basis of this observation, Kakitani and Maffgaiggested yvhen wbromc transitions are |nvplved. The pplquzablllty effect
an alternative mechanism addressing the problem from theiS more uniform: both absorption and emission spectra get
viewpoint of solvent properties. Their model attributes asym- broader on their red wings as a result/of. > 0. Therefore,
metry of the energy gap curves to dielectric saturation of the the two asymmetries, vibronic and polarization, add up on the
solvent in the charge-separated state. Subsequent computeied Side of emission lines making them more asymmetric. In
simulations and integral equation studies of polar solvation contrast, the polarizability asymmetry on the red side of
showed, however, that the saturation needed to produce the2PSorption lines compensates the asymmetry from vibronic
observed asymmetry is hard to achieve in liquid solvéhs. transitions on the. blue side making absorption lines more
Alternative explanations of the flattening of the energy gap plots SYmmetric. The mirror symmetry consequently breaks down.
involve transient effects of nonequilibrium occupation of the ~ Mathematically this is expressed by the spectroscopic skew-
initial and final ET state¥ and spatial distribution of the €SS parametéf

reactants. The latter mechanism concerns only intermolecular

ET30c Qo — w00
K = —-—

In terms of this classification, our present model addresses ' o - w032

the problem of asymmetric energy gap curves from the

viewpoint of the combined effect of the solute and solvent For intramolecular vibrations the parameter

properties. We assign the origin of the asymmetry of the free

energy surfaces of ET to the effect of the solute polarizability K, = £[cothBhw J2))’] 2 (78)
varying in the course of electronic transition. This intramolecular

solute property is coupled to theolvent reaction field, thus is positive for absorption (") and negative for emission
enhancing or diminishing the solutsolvent coupling depending  (“— ”).1'2On the other hand, for solvent-induced broadening
on the solvent configuration. This differential effect is projected «; is always negative foAa > 0

into asymmetric free energy curves with the curvature lower 5

for the state with a higher solute polarizability. The present 6 mAaQ (79)

(77)

theory thus predicts different energy gap laws for CS and CR = m AP

reactions even for intramolecular electronic transitions in rigid :

donor-acceptor complexes. The qualitative result is that both indicating that emission and absorption of photons of lower

the CS and CR curves are flatter in the inverted region comparedenergy is more preferable than photons of higher energy.

to the normal region of ET and the state with higher polariz- A considerable difference in the curvatures of the ET free

ability has a broader energy gap dependence. Because Oknergy surfaces at their minima (Figure 2) is an important result

different polarizabilities in the initial and final ET states the gfthe present study. The classical Marcus theasgumes equal

maxima of CS and CR energy gap curves are shifted relative cyryatures in the initial and final states. This assumption has

to each other. This may result in crossing of the CS and CR peen challenged in terms of nonlinear solvation effé&#835

curves superimposed in one plot with common energy gap scaleThe physical background of the different effects of solvation

or in appearance of a plateau in the near-to-activationless regionnon|inearity and solute polarizability can be explained by the
An important result of the present model is the existence of following qualitative model.

thelinear energy gap law that holds for relatively large energy ~ The free energ¥(P) invested in creation of a nonequilibrium

gaps (eq 60). The linear dependence of the activation energysolvent polarizationP can be expressed as a series in even

on the equilibrium energy gap has indeed been reported for powers ofP with the two first terms as follows

intermoleculat’@ ¢ as well as intramolecul&i®379¢ organic

systems, in binuclear complex&s® and in charge transfer F(P) = ale—i- a2P4 (80)

crystals®® It is commonly explained in terms of the weak

coupling limit of the theory of vibronic bandshapes yielding wherea;, a; > 0. The interaction energy of the solute field
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with the solvent polarizatiorlJes, is linear inP It can be proved by noticing that the ratdg/y;? is the same in
both ET states according to eq 72. Therefore, the Bessel function
Ups=—bP, b>0 (81) and the preexponential factor in eq 47 cancel ouAF(X) =

F2(X) — F1(X) and one gets
For weak solute-solvent interactions, deviations from zero
polarization of the solvent are small and one can keep only the
first harmonic term in eq 80. Anharmonic higher order terms
gain importance for stronger solutsolvent couplings and,
= 0 in eq 80. The nonequilibrium solvent polarization can be Substitution of the parameters yields eq 84.
considered as an ET reaction coordinate. The curvature of the The solvent reorganization energyobtained in the present

A, A
AF(X) — AFg=—Y+ = —

1
— 85
2y, 2y, (83)

corresponding free energy surface is paper is the product of two terms: @) that depends on the
solute polarizability in theith state and (ii) the factor -
F"(Py) = 2a, + 12a2P02 (82) 2AF,Ad/An? > 0 that scales as the polarizability difference
Ad (see eq 37). The effect of the solute polarizabilityspris
at the minimum poinP, defined by the conditiof'(Po) = b. relatively small (Figure 3) and has been, in fact, previously

Equation 82 indicates that nonlinear solvation effects, usually included? It is the polarizabilityvariation, and correspondingly
associated with dielectric saturation, enhance the curvaturethe factor 1— 2AF,;A&/An¥, that makes the main contribution
compared to the linear response regilt= 2a;. This leads to  to the reorganization energy change with electronic transition.
a decrease in the solvent reorganization energy which is This factor has not been included in previous studies and is a
relatively small as the effect arises from anharmonic expansion principle result of the present theory.

terms.

If the solute polarizability is nonzero, the solutsolvent Acknowledgment. This research has been supported by the
interaction energy attains the energy of solute polarization that Office of Naval Research (N00014-97-0265). Useful discussions
is quadratic inP with David Reichman are gratefully acknowledged.

Ups=—bP—cF’, ¢>0 (83)  Appendix A

. The trace over the fluctuating dipolgsandpg in eq 3 can

The total system energlf(P) + Uos includes, therefore, the e represented by a functional integréid1s
guadratic inP term with the coefficientd; — c). This quadratic
term initiates a revision of the frequency of solvent fluctuations  Tr,(exp[-SH]) =
driving ET. The curvature of harmonic surfaces decreases, 1 1
producing higher reorganization energies. Since the solute poOl._l Dp; exp(-fi "Sdpop] —h "Sdpl) (Al)
polarizability contributes already to the harmonic term, its effect )
on the reorganization energy is stronger than that of nonlinear oo Sps and Sie
solvation. The nonlinear solvation and solute polarizability
effects tend to compensate each other. _1 T (. N T oem.

Due to the solute polarization termcP? in eq 83 the P /ZZmO Toy'(Pio M) szoo Torm; (A2)
instantaneous energy gap between the two electronic states is a
bilinear function ofP with a negative second derivative fAi and
> 0 and a positive second derivative fél < 0. The range of .
accessible reaction coordinates is thus limited by the upper SAiSJp;] = l/ZZ (Ot(n))_lpjn'(l - OL(")T),-k'piin -
boundary in the former case and by the lower boundary in the iKn

are the Euclidean actions

latter case. As states witk outside those ranges are thermo- Z Pin*[0no(TjorMo + T'jk-mk) + Tio'Ponl —
dynamically forbidden, the ET free energy surfadegx) ixn

become infinite forX > Xmax at A& > 0 and forX < Xpi, at 1/22 m-T,-m, (A3)
A& < 0 (egs 43-46). The probabilities of such fluctuations are —

zero and the spectral intensities are zero as weh&e Xmax
at Ad > 0 and forhw < Xmin at A& < 0. There is also no  In eqgs A2 and A3, andpj, are the Fourier amplitudes of the
crossing of the diabatic ET surfaces#ax < 0. A nonzero  Euclidean pathg;(r) andpo(z) on the time intervaph, e.g.
variation of the solute polarizability, therefore, produces a one- Sk
sided band for thermal and optical excitation of charge transfer Pon = j; p;(7) explw,) dr (A4)
complexes. The existence of a band edge should considerably
skew an optical band whenever its maximum gets closer to thewherew, = 2zn/fh is the boson Matsubara frequency. Also,
edge. ForAa > 0 andAm > 0 optical bands red-shift from  in eqs A2 and A3
Alyp with increasing solvent polarity, thus moving away from
the band edge. On the other hand, for negatively solvatochromic o) = oy (o) + o) (A5)
dyes withAda > 0 andAm < 0, bands shift closer to their edges
with increasing solvent polarity. Stronger band asymmetries and
should be expected in such cases.

The free energy surfaces of ET should satisfy the linear o = oo (0l + o) (A6)
re|ation'1,11b—e,12c,13d

The path integrals over the trajectorigér) andpo(r) reduce
F,(X) =F,(X) + X (84) to simple Gaussian integrals by the Fourier transformation to
the amplitudesp;, and po,. This integration leads to the

The exact solution given by eq 47 indeed obeys this condition. instantaneous energies given by eq 10 viithas follows
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Eee= U+ USSP — 1/22m,--ﬂk-m'k (A7)
],

where

™

is the effective dipole of the polarizable solvent molecules,
U2 is the solventsolvent dispersion potential. The soltte
solvent component of; is given by eq 13 with

R,= ZTOj-mj' (A9)
J

and

R, = ZToj-a(l —aT), Ty (A10)
J
Appendix B

Here we calculate the integral in eq 22 with the exponential
function given by eq 39 aAd > 0. A negative polarizability
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in: Bursulaya, B. D.; Zichi, D. A.; Kim, H. JJ. Phys. Chem1995 99,
10069. The response frequency is not, however, directly related to the
reorganization energy, see, e.g., refs 5 and 8.
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the Taylor series expansion of efp(&,X)] in AE&/(E + i&)

(eq 39). This yields a series of integrals each containing a pole

of ordern. Their evaluation gives for the integral in eq 22,
denoted ad;, the following expression

© (=EA)" o
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(15) For example: Kleinert, HPath integrals in quantum mechanics,
statistics, and polymer physid#/orld Scientific: Singapore, 1995; Chapter
2.
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dispersion termug'ssiID in eq 10. The renormalization of the permanent
dipoles by the solute and solvent polarizabilities was omitted. The exact
result of integrating over the solute and solvent induced dipoles in eq 3 is
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where J,(x) and I'(x) are the Bessel and gamma functions,
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