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Electron transfer (ET) reactions and optical transitions are considered in chromophores with both the dipole
moment and the electronic polarizability varying with the transition. An exact solution for reaction free energy
surfaces of ET along a reaction coordinate has been obtained in the Drude model for the solute and solvent
polarizabilities. The ET surfaces manifest the following effects of a nonzero polarizability variation: they (i)
are asymmetric, (ii) have different curvatures at their minima, and (iii) become infinite for reaction coordinates
outside a one-sided fluctuation band. The physical origin of these effects is the renormalization of the solute
dipole by the solvent reaction field depending on the nonequilibrium solvent configuration. The reorganization
energies of ET are substantially different for forward and backward transitions with higher reorganization
energy in the state with hider solute polarizability. The dependence of the ET rate on the equilibrium energy
gap is quadratic near the rate maximum and is linear at large energy gaps. The energy gap curves are also
flatter from the side of exothermic reactions and broader for the state with a higher polarizability. The bandshape
analysis of optical transitions is extended to the case of a nonzero polarizability variation.

1. Introduction

Optical spectroscopy and electron transfer (ET) reactions both
probe the same elementary process occurring in a molecule
(solute): the change in its electronic state. Three major
manifestations of such transitions are (i) a variation of the
electric field of the solute acting on the surrounding condensed
phase (solvent), (ii) a change in the intramolecular nuclear
structure of the molecule undergoing electronic transition, and
(iii) a change in a set of transition dipoles and energy gaps of
virtual transitions to other electronic states of the molecule. The
first feature is traditionally related to the solvent effect on
spectroscopic and activation parameters.1 The second effect is
responsible for intramolecular reorganization and conformational
flexibility of the molecule.2 The third effect is reflected in the
ability of the solute to respond to an external electric field. The
intensity of the response is scaled with the polarizability of each
electronic state that determines the magnitude and orientation
of the induced dipole created at the solute. Here we look at the
combined effect of (i) and (iii) addressing the problem of
modification of the solute-solvent coupling by the solute
electronic polarizability.

The solute electric field polarizes the condensed medium,
resulting in an electric (reaction) potential acting on the solute
localized charges. For a nonzero polarizability of the solute,
the solvent potential deforms the electronic charge distribution
producing induced charges acting back on the solvent. This self-
consistent action enhances the effective field of the solute and
leads to higher solvent reorganization energies of electronic
transitions.3-5 To illustrate this point, consider a dipolar solute
possessing the dipole momentsm0i in the two ET states labeled
asi ) 1, 2. As is well-known,6,7 a nonzero solute polarizability
R0i results in a renormalization of the solute dipolem0i f m′0i

increasing its value such that

Here,a > 0 refers to the solvent response function such that
the equilibrium chemical potential of solvationµi is given by

As is seen from eq 2, the solvation chemical potential is
enhanced by the factor 1/(1- 2aR0i) compared to the case of
a nonpolarizable soluteR0i ) 0. The solvent reorganization
energy defined in terms of equilibrium solvation by the nuclear
solvent modes1,2 should increase as well. The reorganization
energy of a polarizable solute is, therefore, higher than the
reorganization energy of a nonpolarizable solute.3-5

The next question that still needs understanding is how the
reorganization parameters are modified if the polarizability
changeswith the electronic transition.3b,d,8,9 Two qualitative
features can be envisioned from the following reasoning.
Coupling of the solvent reaction potential to the difference of
the solute charge densities in the charge transfer and initial states
is associated with the ET reaction coordinate. The free energy
invested in creation of a nonequilibrium solvent configuration
determines the free energy surface of ET.1 A nonequilibrium
solvent configuration creates a nonequilibrium reaction field that
induces charges on the solute. These induced charges may add
to, or subtract from, the fixed solute charges. The effective
solute-solvent coupling will, therefore, increase or decrease
depending on the solvent configuration. Since the solute-solvent
coupling is projected into the ET reaction coordinate, solvent
fluctuations of the same energy may correspond to different
reaction coordinates. This implies an asymmetry of the free
energy surfaces of ET. Furthermore, when the polarizability of
the solute changes with instantaneous electronic transition, the
induced solute dipole changes instantaneously as well. Its
interaction with the reaction field of the nuclear subsystem,

m′0i ) m0i/(1 - 2aR0i) (1)

µi ) -am0im′0i (2)
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frozen on the time scale of ET, will be different in the two
states. This results in a component of the solvent reorganization
energy proportional to the polarizability variation∆R ) R02 -
R01. These two qualitative predictions of the effect of a nonzero
∆R on electronic transitions, asymmetry of the energy surfaces
and enhancement of the reorganization energy, have motivated
our present study.

The aim of this paper is to provide qualitative insights into
the effect of the solute polarizability change on the activation
and spectroscopic parameters of electronic transitions. General
relations are presented below for the activation and reorganiza-
tion free energies, as well as for the spectral moments and band
profiles of optical transitions. Although we use the dielectric
continuum model for numerical evaluations, the theory is
formulated in terms of the solvent response functions and is,
therefore, open to more sophisticated molecular treatments of
the solvent response. In section 2, we obtain the exact solution
for the free energy surfaces of ET for polarizable solutes and
analyze the reorganization parameters and the energy gap law
for ET reactions. It is shown that different polarizabilities in
the neutral and charge transfer states bring about different
reorganization energies and asymmetries of the free energy
surfaces. This is projected into an asymmetric free energy gap
law for ET: the dependence of the activation energy on the
driving force (energy gap law) is found to be less curved and
is shallower from the side of exothermic reactions for the state
with higher polarizability. The energy gap law of ET becomes
increasingly asymmetric with increasing∆R. A linear depen-
dence on the driving force holds for large energy gaps. In section
3, spectroscopic parameters of optical transitions with∆R * 0
are considered. In section 4 we conclude.

2. Electron Transfer

2.1. Free Energy Surfaces.The concept of reaction free
energy surfaces along a reaction coordinate has become a basis
for theoretical descriptions of thermally activated and optical
electronic transitions of molecules dissolved in condensed
phases.1,2 The procedure of calculating the free energy surfaces
is essentially based on the idea of adiabatic separation of
different time scales characteristic of the system undergoing the
electronic transition.10 Two steps are usually considered. In the
first step, the electronic degrees of freedom of the solute and
the solvent are traced out to define the instantaneous (partial)
free energies10c,f,g

whereHi is the Hamiltonian of the system in the ground (i )
1) or excited (i ) 2) states,â ) 1/kBT, and Trel means the trace
over the quantum states of the fast electronic degrees of freedom.
The energiesEi are treated as functions of the configuration of
the slow nuclear subsystem. The conventional Born-Oppen-
heimer energies areâ f ∞ limits of the free energiesEi.
Fluctuations of the nuclear coordinates result in the resonance
E1 ) E2 when the electronic transition occurs. The ET free
energy surface is therefore defined as the free energy invested
in creating a particular mismatchX ) ∆E ) E2 - E1 between
the instantaneous free energiesEi. The collective energy gap
coordinateX thus becomes a natural choice for the reaction
coordinate. The associated free energiesFi(X) are mathemati-
cally given by the expression11,12

Here,δ(x) is the delta function and Trnuc refers to the integral

over the nuclear coordinates of the system. Of course, the
formalism outlined above has been used in quite a number of
ET theories, both analytical10,11b,12,13cand numerical.4,13 The
novel feature of the development in this paper is the explicit
inclusion of the variation of the solute polarizability in calculat-
ing the free energiesFi(X). The rest of this section is developed
in line with the two-step procedure given by eqs 3 and 4.

The model considered here assumes a solute with the dipole
moment and polarizability both varying with electronic transi-
tion:

The solute is dissolved in a solvent of molecules bearing the
dipole momentm and the polarizabilityR. For simplicity, only
isotropic solute and solvent polarizabilities are considered. An
extension to anisotropic polarizabilities is straightforward in the
framework of our formalism.10f

The instantaneous free energiesEi of a dipolar polarizable
solute in a dipolar polarizable solvent can be derived using the
Drude model for induced solute and solvent dipole moments.14

This approach represents the induced dipoles as fluctuating
vectors: pj for the solvent molecules andp0 for the solute. The
potential energy of creating a fluctuating induced dipolep is
given by that of a harmonic oscillator,p2/2R, with the
polarizability R appearing as the oscillator mass. The system
Hamiltonian Hi is the sum of the solvent-solvent,Hss, and
solute-solvent,H0s

(i), parts

In Hi, the permanent and induced dipoles add up resulting in
the solute-solvent and solvent-solvent Hamiltonians in the
form

and

Here and throughout this paper “0” indicates the solute,T jk is
the dipole-dipole interaction tensor, andT̃ jk ) T jk(1 - δjk);
U0s

rep andUss
rep stand for repulsion potentials andIi is the vacuum

energy of theith electronic state. The frequenciesω0 and ωs

characterize electronic excitations of the solute and the solvent,
respectively.

The statistical average over the electronic degrees of freedom
in eq 3 is equivalent, in the Drude model, to integration over
the induced dipole momentsp0 andpj. The HamiltonianHi is
quadratic in the induced dipoles and the trace can be calculated
exactly as a functional integral15 over the fluctuating fieldsp0

and pj (see Appendix A).10f The resulting instantaneous free
energy

is composed of the solvent-solvent part,Ess(eq A7 in Appendix
A), and the solute-solvent part16

exp[-âEi] ) Trel(exp[-âHi]) (3)

exp[-âFi(X)] ) â-1 Trnuc(δ(X - ∆E) exp(-âEi]) (4)

m01 f m02, R01 f R02 (5)

Hi ) H0s
(i) + Hss (6)

H0s
(i) ) Ii +U0s

rep - ∑
j

(m0i + p0)‚T0j‚(mj + pj) +

(1/2R0i)[ω0
-2p3 0

2 + p0
2] (7)

Hss) Uss
rep - 1/2∑

j,k

(mj + pj)‚T̃ jk‚(mk + pk) +

(1/2R)∑
j

[ωs
-2p3 j

2 + pj
2] (8)

Ei ) Ess+ E0s,i (9)
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HereRp is the reaction field of the solvent nuclear subsystem
(eq A9),R∞ is the reaction fields created by the induced solvent
dipoles (eq A10), and

The termsU0s
rep andU0s,i

disp in eq 10 stand for the solute-solvent
repulsion and dispersion potentials, respectively. The termsR∞
and fei are generally second-rank tensors, with the latter being
responsible for the effective enhancement of the solute dipole
moment by the reaction field of the solvent induced dipoles.

In principle, bothR∞ andRp depend on the center-of-mass
coordinates of the solvent molecules;Rp also depends on the
orientations of the solvent permanent multipoles. In defining
the free energy surfaces according to eq 4, we need to include
averages over both theR∞ and Rp reaction fields. In such a
treatment, the free energy surfaces in eq 4 are obtained by
calculating a cumulant expansion in the solute-solvent poten-
tial.3,17 It appears that the second-order cumulants involving
dispersion and induction forces are much smaller than the
corresponding first-order cumulants.3c-e Physically, this means
that the reaction fieldR∞ does not vary considerably with
fluctuations of the center-of-mass coordinates of the molecules
in dense molecular solvents and can be replaced by its average
〈R∞〉. This is the approximation we adopt in the present paper.
The harmonic Drude model for the induced dipoles is equivalent
to the linear response approximation (LRA) in which the
chemical potential of solvation by the induced solvent dipoles
is -ae feim0i

2 and the reaction field of the induced dipoles reads

Here, ae stands for the electronic response function and the
Greek subscripts denote the Cartesian components of the tensor
〈R∞〉 and the vectorm0i. Under these assumptions, the solute-
solvent part of the instantaneous free energies used below have
the form

and

The last, negative contribution toE0s,i in eq 13 is very important
for the following development (see also Appendix in ref 3d). It
is responsible for the modulation of the force constant of the
fluctuations of the solute-solvent coupling by the solute
polarizability (see Discussion below). An analogous term
appears in the second-order perturbation to the instantaneous
Born-Oppenheimer energies (instead of instantaneous free
energies used here, see ref 10f) in Kim’s description.10d In ref
10d, however, the ET free energy surfaces were not calculated
and the term∝ R0iRp

2 was altogether omitted in the subsequent
study of ET.10e

Equation 13 suggests that it is only the distribution of the
inertial (nuclear) reaction fieldRp that is needed in order to
perform the statistical ensemble average in eq 4. In the LRA,
the chemical potential of solvation of the solute dipolem0i by
the solvent inertial (nuclear) degrees of freedom is-apm0i

2,

whereap is the response function of the inertial solvent modes.
Then, the distribution functionP(Rp) of the inertial reaction field
Rp is a Gaussian function

Equations 13-15 form a complete basis for constructing the
free energy surfacesFi(X) according to eq 4. That this
description is consistent is seen from the fact that the ensemble
average

generates the well-known7 solvation chemical potential of a
polarizable dipole (eq 2)

wherea ) ap + ae is the total solvent response function and

For the instantaneous free energies given by eq 13, the
reaction coordinate becomes

Here

and the nonpolar (“np”) energy gap

consists of the vacuum energy gap and solvation stabilization
by dispersion,∆Edisp ) 〈U0s,2

disp〉 - 〈U0s,1
disp〉, and induction forces.

Using eqs 13, 15, and 19, one can carry out integration over
Rp in eq 4, which yields the following integral representation
for the ET free energy surfaces

HereF0i is the equilibrium free energy of the ET system in the
ith state

and

The exponential functionFi(ê,X) in eq 23 is written in the
bilinear form standard for the high-temperature limit of the ET
rate. There are, however, important distinctions from the well-
studied case of zero∆R. In the first place, the quadratic term

depends on the ET state. Here

and

E0s,i ) Ii + U0s
rep + U0s,i

disp - m0i‚fei‚Rp -
1/2m0i‚R∞‚fei‚m0i - 1/2Rp‚R0ifei‚Rp (10)

fei ) [1 - R0iR∞]-1 (11)

〈R∞〉Râ ) 2aeδRâm0i,â (12)

E0s,i ) Ii + U0s
rep + U0s,i

disp - ae feim0i
2 -

feim0i‚Rp - 1/2R0i feiRp
2 (13)

fei ) [1 - 2aeR0i]
-1 (14)

P( Rp) ) (4πapkBT)-1/2 exp[-âRp
2/4ap] (15)

exp[-âµi] ) ∫ exp[-âE0s,i] P(Rp) dRp (16)

µi ) -afim0i
2 (17)

fi ) [1 - 2aR0i]
-1 (18)

X ) ∆Inp - ∆m̃‚Rp - 1/2∆R̃Rp
2 (19)

∆m̃ ) fe2m02 - fe1m01, ∆R̃ ) fe2R02 - fe1R01 (20)

∆Inp ) I2 - I1 + ∆Edisp - ae(fe2m02
2 - fe1m01

2) (21)

exp[-âFi(X) + âF0i] ) ∫∞

-∞ dê
2πâ

Ci(ê) exp[Fi(ê,X)] (22)

Fi(ê,X) ) iê (X - ∆Fi(ê)) - (ηi/â) gi(ê)ê2 (23)

Ci(ê) ) xfigi(ê)/fei (24)

(ηi/â) gi(ê)ê2 (25)

ηi ) ap(fi/fei)∆m̃2 (26)
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The functiongi(ê) multiplying the quadratic termê2 in eq 23 is
responsible for a nonlinear asymmetry of the free energy
surfaces. The factorgi(ê) appears as a result of enhancement of
the differential solute dipole∆m̃ by a nonequilibrium inertial
reaction field of the solvent due to a nonzero∆R̃ (cf. eq 27 to
eqs 14 and 18). It is also included into the vertical energy gap
∆Fi(ê) (eq 23) as

where

is the differential free energy stabilization due to the inertial
solvent modes. In the case∆R̃ ) 0, ∆Fp,i reduces to the well-
known7b result

The moments of any order〈Xn〉i follow directly from eq 22
as derivatives

of the generating function

This yields (n g 2)

For the first cumulant one has

where

The second cumulant

determines the reorganization energy

When the solute polarizability is constant, the reorganization
energy is the same in both reaction states and is given by the
well-known relation3c,7b

The weak dependence of the preexponential factorCi(ê) on
ê can be neglected. The integrand in eq 22 is then an analytic
function in the complexê-plane except the points of essential
singularities atêi when |Fi| f ∞. This observation leads to a

very important property of the ET free energy surfaces obtained
by rewriting the exponential functionFi(ê,X) in the form

Here

and

Also, in the above notation,êi ) â/2γi in eq 27. Atê f ∞,
Fi(ê) f -iêY and the integral in eq 22 can be evaluated as a
contour integral closed in the upper or lower half-plane
depending on the sign ofY. When∆R̃ > 0 the singularitiesêi

(eq 27) are in the lower half plane. The contour integral closed
in the upper half-plane then generates zero for the integral over
ê at Y < 0. This means that

at

Similarly,

at

The pointsXmax andXmin set up the upper and lower boundaries
for the values of the energy gaps between the donor and acceptor
electronic states that can be achieved by the nuclear fluctuations
of the solvent. At∆R̃ f 0 the upper and lower boundaries move
to positive and negative infinities, respectively, allowing the
whole spectrum of the solvent fluctuations.

For ∆R̃ > 0 andX < Xmax or ∆R̃ < 0 andX > Xmin the
contour integral necessitates accounting for the essential sin-
gularity atêi. The integral overê evaluated in Appendix B then
yields

Here, I1(x) is the first-order Bessel function of the imaginary
argument and the preexponential factor

provides the normalization

gi(ê) ) [1 - iê/êi]
-1, êi ) â∆m̃2

2ηi∆R̃
(27)

∆Fi(ê) ) ∆Inp + gi(ê)∆Fp,i (28)

∆Fp,i ) -2ap fi[∆m̃‚m0i + ap fi∆R̃m0i
2] (29)

∆Fp,i ) -2ap ffe∆m‚m0i

) -2(af - ae fe)∆m‚m0i (30)

〈Xn〉i ) 1

(-i)n

∂
n

∂zn
Gi(z)|z)0 (31)

Gi(z) ) exp[Fi(z,0)] (32)

ân〈(δX)n〉i )
(-)n(2n)!!

4
(âλi)(ηi∆R̃

∆m̃2 )n-2

(33)

〈X〉i ) ∆Fi (34)

∆Fi ) ∆Inp + ∆Fp,i (35)

â〈(δX)2〉i ) 2λi (36)

λi ) ηi[1 - 2∆Fp,i
∆R̃
∆m̃2] (37)

λ ) (af - ae fe)∆m2 (38)

Fi(ê,X) ) -iêY - ∆i

êêi

ê + iêi
(39)

Y ) ∆Fi - X + λi/2γi

) ∆Inp + ∆m̃2

2∆R̃
- X (40)

∆i ) λi/2γi (41)

γi ) ηi∆R̃/∆m̃2 (42)

Fi(X) ) ∞ (43)

X > Xmax ) ∆Inp + ∆m̃2

2∆R̃
, ∆R̃ > 0 (44)

Fi(X) ) ∞ (45)

X < Xmin ) ∆Inp - ∆m̃2

2|∆R̃|, ∆R̃ < 0 (46)

exp[-âFi(X) + âF0i] )

Aix|∆i/Y|I1(âx|Y∆i|/|γi|) exp[-â(|Y| + |∆i|)/2|γi|] (47)

Ai
-1 ) 2|γi|(1 - e-âλi/4γi

2
) (48)

â∫-∞

∞
dX exp[-âFi(X) + âF0i] ) 1 (49)
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Equation 47 is the exact analytical solution to the problem
of calculating the ET free energy surfaces in the presence of a
nonzero polarizability variation. Throughout below∆R̃ > 0 is
assumed as the most frequent situation for electronic transitions.
WhenX is not too close toXmax,min the inequalityâx|Y∆i|/γi|
. 1 allows to use the asymptotic expansion

which yields for the ET free energy surfaces (the preexponential
factor is neglected)

At λi/2γi . |∆Fi - X| eq 51 transforms to the standard parabolic
form

Oppositely, whenλi/2γi , |∆Fi - X|, the linear limit is in order

At the boundaryX ) Xmax, Fi(X) become discontinuous:Fi(Xmax

- 0) ) F0i + λi/4γi
2 andFi(Xmax + 0) ) ∞.

In Figure 1, the ET free energies are plotted for the electronic
transition without a polarizability change (R01 ) R02 ) 20 Å3,
dashed lines) and with the excited polarizability twice as high
as that in the ground state (R01 ) 20 Å3, R02 ) 40 Å3, solid
lines). The calculations are performed for the model spherical
solute of the radiusR0 ) 4 Å with the dipole momentsm01 )
0, m02 ) 15 D. This situation is most close to the charge
separation reaction

The response functionsae and ap are taken in the dielectric
continuum form6

and

with the high-frequency,ε∞, and static,εs, dielectric constants
ε∞ ) 2 andεs ) 30. Although more accurate algorithms for
calculatingae andap are available,3,12c,13we are interested here
only in qualitative insights into the effect of nonzero∆R ) R02

- R01 and a continuum description will suffice for this purpose.
Two salient features are seen from Figure 1. First, the

comparison of the dashed-line and solid-line surfaces in the
initial state (i ) 1) shows that the polarizability change brings
about an asymmetric shallowness ofF1(X) from the negativeX
side. The physical origin of this result is clear. The reaction
coordinateX reflects the effect of the inertial solvent reaction
field on the solute electronic states. Depending on the nonequi-
librium nuclear configuration of the solvent, the solute-induced
dipole subtracts from or adds to the solute permanent dipole.
Therefore, the effective differential solute dipole decreases or
increases depending on the solvent configuration resulting in
asymmetry of the free energy surfaces. The second effect of a
nonzero∆R is the broadening of the final (i ) 2) free energy
surface compared to the initial sate (i ) 1) (see Figure 3).
Asymmetry and different curvatures of the free energy surfaces
should lead to a nonparabolic dependence of the ET activation
energy on the equilibrium free energy gap∆F0 ) F02 - F01

(energy gap law18-21) that is considered next.
2.2. Energy Gap Law.The free energies of activation for

the forward (i ) 1, ∆F1) and backward (i ) 2, ∆F2) ET are
calculated from eq 47 as

whereXq stands for the position of the activation barrier at the
intersection of the two diabatic curves,F1(Xq) ) F2(Xq). The
transition state is achieved when the energy gap between the
instantaneous free energies is zero and, according to the
definition of the reaction coordinate in eq 4,Xq ) 0. The
activation energy is then given by the simple equation

Two types of the energy gap law can be immediately
recognized from eq 58. At|∆Fi| , λi/2γi the traditional
quadratic dependence is in order

In the opposite limit, the linear dependence holds

Experimentally, the energy gap law is monitored by changing
the vacuum component of the equilibrium vertical gap∆Fi

through chemical substitution of the donor and/or acceptor
units.18-21 The solvent component of∆Fi is usually assumed,
though not always justly,22 to be reasonably constant. The
quadratic and linear dependence on∆Fi in eqs 59 and 60 then
become the quadratic and linear energy gap laws, respectively.
Note also that ifXmax in eq 44 is negative, no crossing of the
diabatic ET surfaces is possible. The activation energy is infinite
and no radiationless transitions are induced by the nuclear

Figure 1. Free energy surfacesFi(X) (labeled as 1 and 2) for the exited
state polarizabilityR02 ) 20 Å3 (dashed lines) andR02 ) 40 Å3 (solid
lines). Solute and solvent parameters arem01 ) 0, m02 ) 15 D, R01 )
20 Å3, R0 ) 4 Å, εs ) 2, εs ) 30; a zero equilibrium energy gap of ET
is assumed.

I1(x) f (2πx)-1/2ex, x f ∞ (50)

Fi(X) ) F0i + (2γi)
-1(x∆Fi - X + λi/2γi - xλi/2γi)

2 (51)

Fi(X) ) F0i +
(X - ∆Fi)

2

4η
(52)

Fi(X) ) F0i +
|∆Fi - X|

2γi
(53)

D - A f D+ - A- (54)

ae )
ε∞ - 1

2ε∞ + 1
1

R0
3

(55)

ap ) [ εs - 1

2εs + 1
-

ε∞ - 1

2ε∞ + 1] 1

R0
3

(56)

Fi
act ) Fi(X

q) - F0i (57)

Fi
act ) 1

2γi
(x∆Fi + λi/2γi - xλi/2γi)

2 (58)

Fi
act )

(∆Fi)
2

4λi
(59)

Fi
act )

|∆Fi|
2γi

(60)
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solvent fluctuations. Other activation mechanisms should be
included for the reaction to occur.

Figure 2 shows the activation energy of the forward (charge
separation, CS) reaction vs∆FCS ) ∆F0 and backward (charge
recombination, CR) reaction vs∆FCR ) -∆F0 for the transition
m01 ) 0 f m02 ) 15 D andR01 ) 20 Å3 f R02 ) 40 Å3. Two
important effects of nonzero∆R manifest themselves in Figure
2. First, in contrast to the case of zero∆R, the maxima of the
CS and CR curves do not coincide. Second, the CR curve is
broader and shallower from the side of negative energy gaps
compared to the CS curve.

The energy gap law for thermally activated ET reactions is
often obtained by superimposing CS and CR data on a common
scale of∆F0.18 For such a procedure, depending on the energy
range studied, two outcomes are predicted by the present theory.
For a narrow range of∆FCS and∆FCR values close to zero, the
intersection of two curves (illustrated by circles in Figure 2)
may occur. Such a behavior was indeed observed in ref 18b for
a series of porphyrin-quinone diads. Note that maxima of the
CS and CR curves get closer to each other with decreasing
solvent polarity and, in fact, no curve crossing was seen for the
same systems in benzene as a solvent.18b When the normal
region of CS is combined with the inverted region for CR,
another scenario is possible. The two branches (shown by
squares in Figure 2) fitted by a single curve (the dashed line in
Figure 2) result in a plateau in the energy gap law (a picture
reminiscent of this behavior can be seen in Figure 4 of ref 18c).

2.3. Reorganization Energy.In traditional theories of ET
the reorganization energy is responsible for two important
links: (i) between the verticalinternal energy gap and the
equilibrium free energy gap and (ii) between the curvature of
the ET free energy surfaces and the energetic intensity of the
solvent fluctuations measured by widths of optical spectral lines.
These two connections are frequently used as means to define
the reorganization energy. In the first route, the reorganization
energy is given through the vertical energy gaps corresponding
to optical transitions with the energiespωi (i ) 1 for absorption
and i ) 2 for emission)4

The second route is through the mean-squared fluctuation of
the nuclear subsystem projected into the reaction coordinate (eq
36).4,13c,d The two definitions are equivalent for parabolic ET
free energy surfaces, but lead to different results for nonparabolic

Fi(X). There is therefore no unique definition ofλi in the latter
case12c,13d,23and one of the two routes should be chosen.

We favor the second definition (eq 36) for the following
reasons. First, the calculation or experimental probing of the
vertical energy gaps involves highly nonequilibrium final states
that may be affected by nonlinear solvation and/or asymmetry
of the free energy curves owing to differing polarizabilities of
the ET states. Second, the second cumulant〈(δX)2〉i is often
available from computer simulations5,8,13eand can be exactly
calculated in our present model (eqs 36 and 37).

Electronic excitations usually result in higher polarizabilities
of the excited stateR02 > R01.24 Therefore, for positively
solvatochromic dyes withm02 > m01 one has∆Fp,i < 0 in eq
37 and excitation leads to a higher reorganization energy. This
is illustrated in Figure 3 where we have plottedλi againstR02.
As is seen, the reorganization energy approximately doubles
with excitation when the excited-state polarizability is about
50% higher than the ground-state value. Such polarizability
differences are not uncommon for optical chromophores24 (see
Table 1) and we will discuss this result in the application to
optical spectroscopy in the next section. The effect of the
negative polarizability variation is much weaker andλ2 is only
slightly smaller thanλ1. An opposite dependence of the
reorganization energy on the polarizability difference to that
given here was reported in ref 8. The reorganization energy
computed from simulations via eq 36 falls from 0.86 eV for a
nonpolarizable solute (m01 ) 5.4 f m02 ) 10.7 D,R01 ) R02

) 0) to 0.43 eV for the transition with the positive polarizability
change (R01 ) 0.06 f R02 ) 3.21 Å3) and the same dipoles.
Since the ground-state polarizability is close to zero, that result
is also at odds with several previous studies.3-5

Figure 2. ET energy gap law for the charge separation (CS,m01 f
m02, ∆FCS ) ∆F0) and charge recombination (CR,m02 f m01, ∆FCR )
-∆F0) reactions atR01 ) 20 Å3 andR02 ) 40 Å3. Parameters are as in
Figure 1. Points and the dashed line are drawn to illustrate two possible
outcomes of combining CS and CR experimental data in one plot with
a common energy gap scale (see the text).

λ1 ) |pω1 - ∆F0| λ2 ) |pω2 + ∆F0| (61)

Figure 3. Dependence of the solvent reorganization energy in the initial
(1) and charge-separated (2) states on the polarizability of the final
stateR02. The dashed line indicates the value ofη2 from eq 26. Other
solute and solvent parameters are as in Figure 1.

TABLE 1: Ground State Polarizability ( r1) and Trace of
the Tensor of Polarizability Variation (1/3) Tr[ ∆r] for
Several Optical Dyes and Charge Transfer Complexes

chromophore R1/Å3
(1/3)Tr
[∆R]/Å3 ref

anthracene 25 17 24a
2,2′-bypyridine-3,3′diol 21 11 24d
bis(adamantylidene) 42 29 24c
1-(dimethylamino)-2,6-dicyano-4-methylbenzene 22 35 24b
tetraphenylethylene 50 38 32a
[(C)5FeIICNOsIII (NH3)5]- 57 32c
(NC)5OsIICNRuIII (NH3)5]- (190)317a 32d

310b 32e

a For two different charge-transfer transitions.b Obtained with the
local field correction factorf ) 1.3.
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3. Optical Spectra

Bandshapes of inhomogeneously broadened optical lines can
be obtained directly from ET energy surfaces. Normalized
(∫Ii(ω) dω ) 1) intensities (∆R > 0)

of absorption (i ) 1) and emission (i ) 2) transitions follow
from the free energy surfacesFi(X) given in eq 47 by replacing
the reaction coordinateX with the energypω of the incident
light. If the spectral line can be fitted to a Gaussian, the band
maximum

and the width

follow from eqs 35 and 36. For a non-Gaussian line,∆Fi and
σi

2 give the first and second spectral moments, respectively.
The general effect of a positive polarizability change∆R > 0
is to enhance the solvent-induced shift of emission bands and
to broaden bands for both absorption and emission, with a
stronger broadening of emission lines. This is illustrated in
Figure 4 where we show the normalized intensitiesIi(ω) for a
model positively solvatochromic (m02 > m01) dye (parameters
are as in Figure 1) for∆R ) 0 and ∆R ) 20 Å3. Broader
emission lines are seen for both the solvent-broadened lines (the

upper panel) and for the vibrational envelopes (the lower panel,
eq 69 below).

The solvent-induced Stokes shift

is now the sum of two contributions: one arising from the
variation of the solute dipole (the first summand) and one due
to the polarizability change (the second summand). The Stokes
shift is hence nonzero even if the charge distribution does not
change in the course of the transition (m02 ) m01). A term similar
to the second summand in eq 65 appears also in the reorganiza-
tion energy calculations by Liu and Newton combining the ab
initio electronic structure with self-consistent field of nonspheri-
cal dielectric cavities.25 Our exact equation for the Stokes shift
differs from the relation given by Kim10d due to several
approximations employed there. In the limit∆R ) 0, eq 65 is
identical to the classical Liptay result,7b whereas Kim’s equation
is not.

One of the consequences of nonzero∆R is that the relation

valid for linear solvation response and∆R ) 0 does not hold
any more. In Figure 5, the widthsâσi

2 are plotted vs the Stokes
shift obtained by varying the static dielectric constant of the
solvent in the rangeεs ) 3-65. The absorption width deviates
downward from the unity slope line predicted by eq 66 while
the emission width goes upward. The opposite behavior follows
from nonlinear solvation effects:23 the absorption width deviates
upward from eq 66 and the emission width goes downward.
This is because nonlinear solvation results in narrowing of
emission lines in contrast to the broadening effect of∆R > 0.
The two effects, therefore, tend to compensate each other in
the dependence ofâσi

2 vs p∆ωst, although the effect of the
polarizability variation is stronger.

Asymmetry of the free energy surfacesFi(X) (Figure 1) does
not manifest itself in optical bandshapes for the solute and
solvent parameters considered here. Deviations from the Gauss-
ian bandshape can be measured by the parameter

reflecting the difference between the reorganization energyλi

obtained from the Gaussian widthσi and the reorganization
energyλwi extracted from the widthσi(1/2) measured at the level

Figure 4. Normalized absorption (a) and emission (e) spectra forR01

) R02 ) 20 Å3 (dashed lines) andR02 ) 40 Å3 (solid lines). The upper
panel shows solvent-broadened lines and the lower panel shows the
vibronic envelopes calculated according to eq 69. The dash-dotted
lines in the lower panel indicate the four first vibronic components of
the sum in eq 69. The solvent and solute parameters are as in Figure
1; λv ) 0.4 eV,pωv ) 0.2 eV.

Ii(ω) ) âpAix∆i/Y(ω)I1(âxY(ω)∆i/γi) ×
exp[-â(Y(ω) + ∆i)/2γi] (62)

pωi ) ∆Fi (63)

σi
2 ) 2kBTηi[1 - 2∆Fp,i

∆R̃
∆m̃2] (64)

Figure 5. Dependence of absorption (a) and emission (e) widths on
the Stokes shift obtained by changing the static solvent dielectric
constant in the rangeεs ) 3-65. The dash-dotted line indicates the
equalityp∆ωst ) 2λ valid for ∆R ) 0.

p∆ωst ) pω1 - pω2 ) 2ap∆m̃‚[f2m02 - f1m01] +

2ap
2∆R̃[(f2m02)

2 - (f1m01)
2] (65)

p∆ωst ) âσ2 (66)

si ) λwi/λi (67)
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of half band intensity

For the calculations shown in Figures 3 and 5, the parameters
si are very close to unity, indicating that the optical lines can
be fitted to Gaussian functions. Higher polarizability changes
are needed for the asymmetry effect to be seen in optical
bandshapes. Note also that in many cases the∆R tensor is highly
anisotropic.24 A substantial component of∆R along the direction
of charge transfer may considerably enhance the band asym-
metry. Since consideration of real systems is necessary for
quantifying this effect, we refrain here from speculating on this
point.

For a complete description of the spectral bandshape one
needs to include the influence of intramolecular vibronic
excitations. In the model of one quantum ((λv/pωv)
cosech(âpωv) , 1), intramolecular (skeletal) vibrational mode
with the frequencyωv and the vibrational reorganization energy
λv one gets2c,22,26,27

Here

S) λv/pωv, and “+” and “-” refer to absorption and emission,
respectively. The transition frequency is nonzero only if the light
frequency is confined by the one-sided band

For absorption transitions, the boundaryωmax
(n) blue-shifts with

n and all vibronic transitions can effectively contribute to the
bandshape. Oppositely, for emission transitions, the band
boundary red-shifts withn and starting withn of the order ofS
+ λi/2γipωv the corresponding vibronic excitations contribute
increasingly less to the band intensity.

The first spectral moment calculated from eq 69, is equal to
∆Fi ( λv. The solvent-induced shift∆Fi can thus be measured
providedλv is available from independent sources. The param-
eters λi, γi, and ωv are usually unknown and should be
considered as fitting parameters of the bandshape analysis. Yet
the coefficientsγi and the reorganization energiesλi are not
independent as

and

These relations can be used as a consistency test of the
bandshape analysis. Also, when the dispersion component of
the spectral shift is negligible, there is a linear correlation

betweenλi/γi and the energy of the band maximum such that

The factorsfei in ∆m̃ and∆R̃ are commonly close to unity and
the intercept of the plotλi/γi vs pωi can be used as a measure
of ∆m2/∆R.

4. Discussion

Underlying the theoretical treatment presented here is the idea
that the charge distribution induced on the solute by a nonequi-
librium solvent reaction field changes instantaneously with
electronic transition if the solute polarizability is different in
the two ET states. A Franck-Condon transition changes not
only the solute-solvent interaction potential linear in the solvent
reaction fieldRp but also the solute polarization energy quadratic
in Rp (eq 13). The instantaneous energy gap between the donor
and acceptor states in then a bilinear function in the Gaussian
field Rp (eq 15). The problem of calculating the ET free energy
surfaces from the instantaneous free energiesE0i is, therefore,
formally equivalent to that of two displaced oscillators with
different force constants. The corresponding Hamiltonian with
the classical nuclear modeq reads

Radiationless transitions between the surfaces defined by eq 76,
usually associated with Duschinsky rotation of normal modes,28

have been considered in numerous studies focusing mostly on
the case quantum nuclear modes.29 Equation 47 derived here
for the particular problem of the solute polarizability effects on
electronic transitions gives, at the same time, the exact solution
of the Duschinsky rotation problem with classical normal modes.
Note that the Franck-Condon factor in the Golden Rule
expression for the transition probability is given by eq 47 with
X ) 0.

The model of two displaced parabolas with different curva-
tures has been actively employed in application to ET by
Kakitani and Mataga.30 However, as first noticed by Tachiya,31

projection of thermal bath oscillators with different force
constants onto one collective transition coordinate∝ (H2 - H1)
should result both in different curvatures at equilibria and
asymmetries of the corresponding free energy surfaces. These
are indeed the features reflected by the present model. The
interaction of the differential induced charge with the inertial
nuclear field frozen on the electronic time scale results in the
following qualitative effects: (i) the solvent reorganization
energies in the initial and final ET states are different, (ii) the
ET free energy curves are asymmetric, and (iii) the range of
reaction coordinates is limited by the upper boundary at∆R >
0 and by the lower boundary at∆R < 0. The ET free energies
are infinite outside the corresponding fluctuation bands. The
magnitudes of these effects are governed by the difference of
polarizabilities in the final and initial states,∆R. Unfortunately,
measurement32 and calculation33 of ∆R is still a challenge and
polarizabilities in both ground and excited states are known only
for a few optical chromophores. Recent results of Stark
spectroscopy24b-d,32 indicate that polarizability may vary sub-
stantially for many optical chromophores and charge-transfer
complexes. To provide the reader with a perception of magni-
tudes involved, Table 1 shows some examples of polarizability
changes taken from the recent Stark spectroscopy literature.24b-d,32

Noteworthy is a very large polarizability change for binuclear

λwi )
âσi(1/2)2

16 ln(2)
(68)

Ii(ω) ) âpAi e-S∑
n)0

∞ Sn

n!x ∆i

Yn(ω)
I1(âxYn(ω)∆i/γi) ×

exp[-â(Yn(ω) + ∆i)/2γi] (69)

Yn ) ∆Fi + λi/2γi ( npωv - pω (70)

pω < pωmax
(n) ) ∆Fi + λi/2γi ( npωv (71)

λ1

γ1
3

)
λ2

γ2
3

(72)

(2γ1)
-1 ) 1 + (2γ2)

-1 (73)

λ2

γ2
-

λ1

γ1
) 2p∆ωst (74)

λi

γi
) ∆m̃2

∆R̃
+ 2(I2 - I1) - 2pωi (75)

Hi ) H0i + Ciq + 1/2ωi
2q2 (76)
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charge-transfer complexes. Even higher polarizability variations
occur in polyenes.32a,34

The Marcus theory of ET1 predicts a parabolic dependence
of the ET activation energy on the ET driving force∆F0. Such
an idealized behavior has, however, never been observed for
real ET systems. Although bell-shaped curves are now docu-
mented for charge shift,19 charge separation,20 and charge
recombination21 reactions, all observed energy gap laws are
substantially asymmetric. Basically, two explanations of this
asymmetry have been proposed in the literature. The first
approach addresses the problem from the viewpoint of the
donor-acceptor supermolecule. It assigns the observed asym-
metry to intramolecular vibronic excitations. Vibrational excita-
tions accommodate the energy of exothermic reactions making
the energy gap curves shallower in the inverted region of ET.
This model predicts a mirror symmetry between forward and
backward ET: the activation energy of a forward reaction,
∆F1(∆F0), should coincide with the activation energy of the
backward reaction,∆F2(-∆F0), at the inverted energy gap. This
prediction seems, however, to contradict experiments showing
very different energy gap laws for CS and CR reactions.30 On
the basis of this observation, Kakitani and Mataga30 suggested
an alternative mechanism addressing the problem from the
viewpoint of solvent properties. Their model attributes asym-
metry of the energy gap curves to dielectric saturation of the
solvent in the charge-separated state. Subsequent computer
simulations and integral equation studies of polar solvation
showed, however, that the saturation needed to produce the
observed asymmetry is hard to achieve in liquid solvents.13,35

Alternative explanations of the flattening of the energy gap plots
involve transient effects of nonequilibrium occupation of the
initial and final ET states36 and spatial distribution of the
reactants. The latter mechanism concerns only intermolecular
ET.30c

In terms of this classification, our present model addresses
the problem of asymmetric energy gap curves from the
viewpoint of the combined effect of the solute and solvent
properties. We assign the origin of the asymmetry of the free
energy surfaces of ET to the effect of the solute polarizability
varying in the course of electronic transition. This intramolecular
soluteproperty is coupled to thesolVent reaction field, thus
enhancing or diminishing the solute-solvent coupling depending
on the solvent configuration. This differential effect is projected
into asymmetric free energy curves with the curvature lower
for the state with a higher solute polarizability. The present
theory thus predicts different energy gap laws for CS and CR
reactions even for intramolecular electronic transitions in rigid
donor-acceptor complexes. The qualitative result is that both
the CS and CR curves are flatter in the inverted region compared
to the normal region of ET and the state with higher polariz-
ability has a broader energy gap dependence. Because of
different polarizabilities in the initial and final ET states the
maxima of CS and CR energy gap curves are shifted relative
to each other. This may result in crossing of the CS and CR
curves superimposed in one plot with common energy gap scale
or in appearance of a plateau in the near-to-activationless region.

An important result of the present model is the existence of
the linear energy gap law that holds for relatively large energy
gaps (eq 60). The linear dependence of the activation energy
on the equilibrium energy gap has indeed been reported for
intermolecular37a-c as well as intramolecular27c,37d,e organic
systems, in binuclear complexes,2c,38 and in charge transfer
crystals.39 It is commonly explained in terms of the weak
coupling limit of the theory of vibronic bandshapes yielding

the linear-logarithmic dependence∝ ∆Fi ln ∆Fi on the vertical
energy gap∆Fi.2c,26,27cThe strictly linear dependence∝ ∆Fi

arising from a nonzero polarizability difference may provide
an alternative explanation of this phenomenon. In fact, the switch
of in the energy gap law from the quadratic to linear dependence
happens in passing from weakly coupled22,37a to strongly
coupled37a-c ion pairs. In the latter case, the polarizability may
change considerably with charge transition.

Both vibrational envelopes and solvent-broadened optical
lines show vastly different widths for emission and absorption
spectra with a nonzero∆R (Figure 4). Although the numerical
examples used in this paper have shown only a very moderate
asymmetry of optical bands, some general insights into the effect
of the polarizability change on band profiles are relevant here.

The conventional procedure attributes all asymmetry of
optical bands to excitations of vibronic states. These transitions
are especially effective on blue wings of absorption lines and
red wings of emission lines making absorption spectra broader
on the right side from the maximum and emission spectra
broader on the left side from the maximum. However, the mirror
symmetry between absorption and emission lines40 still holds
when vibronic transitions are involved. The polarizability effect
is more uniform: both absorption and emission spectra get
broader on their red wings as a result of∆R > 0. Therefore,
the two asymmetries, vibronic and polarization, add up on the
red side of emission lines making them more asymmetric. In
contrast, the polarizability asymmetry on the red side of
absorption lines compensates the asymmetry from vibronic
transitions on the blue side making absorption lines more
symmetric. The mirror symmetry consequently breaks down.

Mathematically this is expressed by the spectroscopic skew-
ness parameter11a

For intramolecular vibrations the parameter

is positive for absorption (“+”) and negative for emission
(“- ”).11a On the other hand, for solvent-induced broadening
κ1 is always negative for∆R > 0

indicating that emission and absorption of photons of lower
energy is more preferable than photons of higher energy.

A considerable difference in the curvatures of the ET free
energy surfaces at their minima (Figure 2) is an important result
of the present study. The classical Marcus theory1 assumes equal
curvatures in the initial and final states. This assumption has
been challenged in terms of nonlinear solvation effects.13,30,35

The physical background of the different effects of solvation
nonlinearity and solute polarizability can be explained by the
following qualitative model.

The free energyF(P) invested in creation of a nonequilibrium
solvent polarizationP can be expressed as a series in even
powers ofP with the two first terms as follows

wherea1, a2 > 0. The interaction energy of the solute field

κ1 )
〈(ω - 〈ω〉i)

3〉

〈(ω - 〈ω〉i)
2〉3/2

(77)

κ1 ) ([S(coth(âpωv/2))3]-1/2 (78)

κ1 ) - 6

x2âλi

ηi∆R̃

∆m̃2
(79)

F(P) ) a1P
2 + a2P

4 (80)
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with the solvent polarization,U0s, is linear inP

For weak solute-solvent interactions, deviations from zero
polarization of the solvent are small and one can keep only the
first harmonic term in eq 80. Anharmonic higher order terms
gain importance for stronger solute-solvent couplings anda2

* 0 in eq 80. The nonequilibrium solvent polarization can be
considered as an ET reaction coordinate. The curvature of the
corresponding free energy surface is

at the minimum pointP0 defined by the conditionF′(P0) ) b.
Equation 82 indicates that nonlinear solvation effects, usually
associated with dielectric saturation, enhance the curvature
compared to the linear response resultF′′ ) 2a1. This leads to
a decrease in the solvent reorganization energy which is
relatively small as the effect arises from anharmonic expansion
terms.

If the solute polarizability is nonzero, the solute-solvent
interaction energy attains the energy of solute polarization that
is quadratic inP

The total system energyF(P) + U0s includes, therefore, the
quadratic inP term with the coefficient (a1 - c). This quadratic
term initiates a revision of the frequency of solvent fluctuations
driving ET. The curvature of harmonic surfaces decreases,
producing higher reorganization energies. Since the solute
polarizability contributes already to the harmonic term, its effect
on the reorganization energy is stronger than that of nonlinear
solvation. The nonlinear solvation and solute polarizability
effects tend to compensate each other.

Due to the solute polarization term-cP2 in eq 83 the
instantaneous energy gap between the two electronic states is a
bilinear function ofP with a negative second derivative for∆R̃
> 0 and a positive second derivative for∆R̃ < 0. The range of
accessible reaction coordinates is thus limited by the upper
boundary in the former case and by the lower boundary in the
latter case. As states withX outside those ranges are thermo-
dynamically forbidden, the ET free energy surfacesFi(X)
become infinite forX > Xmax at ∆R̃ > 0 and forX < Xmin at
∆R̃ < 0 (eqs 43-46). The probabilities of such fluctuations are
zero and the spectral intensities are zero as well forpω g Xmax

at ∆R̃ > 0 and forpω e Xmin at ∆R̃ < 0. There is also no
crossing of the diabatic ET surfaces atXmax < 0. A nonzero
variation of the solute polarizability, therefore, produces a one-
sided band for thermal and optical excitation of charge transfer
complexes. The existence of a band edge should considerably
skew an optical band whenever its maximum gets closer to the
edge. For∆R̃ > 0 and∆m̃ > 0 optical bands red-shift from
∆Inp with increasing solvent polarity, thus moving away from
the band edge. On the other hand, for negatively solvatochromic
dyes with∆R̃ > 0 and∆m̃< 0, bands shift closer to their edges
with increasing solvent polarity. Stronger band asymmetries
should be expected in such cases.

The free energy surfaces of ET should satisfy the linear
relation4,11b-e,12c,13d

The exact solution given by eq 47 indeed obeys this condition.

It can be proved by noticing that the ratio∆i/γi
2 is the same in

both ET states according to eq 72. Therefore, the Bessel function
and the preexponential factor in eq 47 cancel out in∆F(X) )
F2(X) - F1(X) and one gets

Substitution of the parameters yields eq 84.
The solvent reorganization energyλi obtained in the present

paper is the product of two terms: (i)ηi that depends on the
solute polarizability in theith state and (ii) the factor 1-
2∆Fp,i∆R̃/∆m2 > 0 that scales as the polarizability difference
∆R̃ (see eq 37). The effect of the solute polarizability onηi is
relatively small (Figure 3) and has been, in fact, previously
included.3 It is the polarizabilityVariation, and correspondingly
the factor 1- 2∆Fp,i∆R̃/∆m2, that makes the main contribution
to the reorganization energy change with electronic transition.
This factor has not been included in previous studies and is a
principle result of the present theory.
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Appendix A

The trace over the fluctuating dipolespj andp0 in eq 3 can
be represented by a functional integral14b,d,15

HereS0s andSss are the Euclidean actions

and

In eqs A2 and A3p0n andpjn are the Fourier amplitudes of the
Euclidean pathspj(τ) andp0(τ) on the time intervalâp, e.g.

whereωn ) 2πn/âp is the boson Matsubara frequency. Also,
in eqs A2 and A3

and

The path integrals over the trajectoriespj(τ) andp0(τ) reduce
to simple Gaussian integrals by the Fourier transformation to
the amplitudespjn and p0n. This integration leads to the
instantaneous energies given by eq 10 withEss as follows

U0s ) -bP, b > 0 (81)

F′′(P0) ) 2a1 + 12a2P0
2 (82)

U0s ) -bP - cP2, c > 0 (83)

F2(X) ) F1(X) + X (84)

∆F(X) - ∆F0 ) -Y +
∆2

2γ2
-

∆1

2γ1
(85)

Trel(exp[-âHi]) )

∫Dp0∏
j

Dpj exp(-p-1S0s[p0,pj] - p-1Sss[pj]) (A1)

âpS0s ) 1/2∑
n

m0‚T0j‚(pj0 + mj) - ∑
j

p00‚T0j‚mj (A2)

âpSss[pj] ) 1/2∑
j,k,n

(R(n))-1pjn‚(1 - R(n)T̃)jk‚pkn
/ -

∑
j,k,n

pjn‚[δn0(T j0‚m0 + T̃ jk‚mk) + T j0‚p0n
/ ] -

1/2∑
jk

mj‚T̃ jk‚mk (A3)

p0n ) ∫0

âp
pj(τ) exp(iωnτ) dτ (A4)

R0i
(n) ) R0iω0

2/(ω0
2 + ωn

2) (A5)

R(n) ) Rωs
2/(ωs

2 + ωn
2) (A6)
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where

is the effective dipole of the polarizable solvent molecules,
Uss

disp is the solvent-solvent dispersion potential. The solute-
solvent component ofEi is given by eq 13 with

and

Appendix B

Here we calculate the integral in eq 22 with the exponential
function given by eq 39 at∆R̃ > 0. A negative polarizability
variation is treated analogously. The integral is calculated by
the Taylor series expansion of exp[Fi(ê,X)] in ∆iêêi/(ê + iêi)
(eq 39). This yields a series of integrals each containing a pole
of order n. Their evaluation gives for the integral in eq 22,
denoted asIi, the following expression

The derivatives in the above series can be recast in terms of
Laguerre polynomialsLn

1(x)41

This sum leads to eq 47 by using the identity41

where JV(x) and Γ(x) are the Bessel and gamma functions,
respectively.
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